Highest vectors of representations (total 8) ; the vectors are over the primal subalgebra. | \(g_{-1}\) | \(h_{1}\) | \(g_{1}\) | \(g_{2}\) | \(g_{3}\) | \(g_{4}\) | \(g_{5}\) | \(g_{6}\) |
weight | \(0\) | \(0\) | \(0\) | \(\omega_{1}\) | \(\omega_{1}\) | \(\omega_{1}\) | \(\omega_{1}\) | \(2\omega_{1}\) |
weights rel. to Cartan of (centralizer+semisimple s.a.). | \(-4/3\psi\) | \(0\) | \(4/3\psi\) | \(\omega_{1}-2\psi\) | \(\omega_{1}-2/3\psi\) | \(\omega_{1}+2/3\psi\) | \(\omega_{1}+2\psi\) | \(2\omega_{1}\) |
Isotypical components + highest weight | \(\displaystyle V_{-4/3\psi} \) → (0, -4/3) | \(\displaystyle V_{0} \) → (0, 0) | \(\displaystyle V_{4/3\psi} \) → (0, 4/3) | \(\displaystyle V_{\omega_{1}-2\psi} \) → (1, -2) | \(\displaystyle V_{\omega_{1}-2/3\psi} \) → (1, -2/3) | \(\displaystyle V_{\omega_{1}+2/3\psi} \) → (1, 2/3) | \(\displaystyle V_{\omega_{1}+2\psi} \) → (1, 2) | \(\displaystyle V_{2\omega_{1}} \) → (2, 0) | ||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | \(W_{7}\) | \(W_{8}\) | ||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. |
| Cartan of centralizer component.
|
|
|
|
|
| Semisimple subalgebra component.
| ||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(0\) | \(0\) | \(\omega_{1}\) \(-\omega_{1}\) | \(\omega_{1}\) \(-\omega_{1}\) | \(\omega_{1}\) \(-\omega_{1}\) | \(\omega_{1}\) \(-\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | ||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(-4/3\psi\) | \(0\) | \(4/3\psi\) | \(\omega_{1}-2\psi\) \(-\omega_{1}-2\psi\) | \(\omega_{1}-2/3\psi\) \(-\omega_{1}-2/3\psi\) | \(\omega_{1}+2/3\psi\) \(-\omega_{1}+2/3\psi\) | \(\omega_{1}+2\psi\) \(-\omega_{1}+2\psi\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | ||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{-4/3\psi}\) | \(\displaystyle M_{0}\) | \(\displaystyle M_{4/3\psi}\) | \(\displaystyle M_{\omega_{1}-2\psi}\oplus M_{-\omega_{1}-2\psi}\) | \(\displaystyle M_{\omega_{1}-2/3\psi}\oplus M_{-\omega_{1}-2/3\psi}\) | \(\displaystyle M_{\omega_{1}+2/3\psi}\oplus M_{-\omega_{1}+2/3\psi}\) | \(\displaystyle M_{\omega_{1}+2\psi}\oplus M_{-\omega_{1}+2\psi}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | ||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{-4/3\psi}\) | \(\displaystyle M_{0}\) | \(\displaystyle M_{4/3\psi}\) | \(\displaystyle M_{\omega_{1}-2\psi}\oplus M_{-\omega_{1}-2\psi}\) | \(\displaystyle M_{\omega_{1}-2/3\psi}\oplus M_{-\omega_{1}-2/3\psi}\) | \(\displaystyle M_{\omega_{1}+2/3\psi}\oplus M_{-\omega_{1}+2/3\psi}\) | \(\displaystyle M_{\omega_{1}+2\psi}\oplus M_{-\omega_{1}+2\psi}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) |